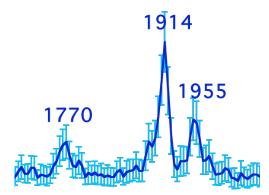
High Flux ⁵⁷Fe Nuclear Spectroscopy with a 25m ID

Ming-Hsi Chiang,^{§*#} Vladimir Pelmenschikov,^{€*#} Leland B. Gee,^{†#} Yu-Chiao Liu,[§] Chang-Chih Hsieh,[§] Hongxin Wang,^{\$} Yoshitaka Yoda, [¥] Hiroaki Matsuura,[‡] Lei Li,[¶] Martin Kaupp, [€] and Stephen P. Cramer^{\$*}

§ Institute of Chemistry, Academia Sinica, Nankang, Taipei 115, Taiwan

€ Institut für Chemie, Technische Universität Berlin, 10623

[†] Department of Chemistry, Stanford University, Stanford, California 94305, United States


\$ SETI Institute, Mountain View, CA 94043 USA

* Research and Utilization Division, SPring-8/JASRI, 1-1-1 Kouto, Sayo, Hyogo 679-5198, JAPAN

‡ RIKEN/SPring-8 Center, Advanced Photon Technology Division, Life Science Research Infrastructure Group, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan

We have been using the high flux available at BL19LXU for NRVS measurements on Fe-H and Fe-(H₂) complexes. Our goal has been to observe Fe-H and Fe-H₂ vibrational modes, some of which occur in the 1700-2000 cm⁻¹ region. These are relevant to future studies on [NiFe] and [FeFe] hydrogenase enzymes, which catalyze: $H_2 \rightleftharpoons 2H^+ + 2e^-$. Iron hydrogen chemistry is also relevant in its own right, since many Fe complexes and materials are being developed for fuel cell catalysts.

We observed Fe-H stretching modes at 1915 and 1957 cm⁻¹, along with an asymmetric Fe-H₂ stretch at 1773 cm⁻¹. Calculations suggest that even D-D stretching modes in Fe(D₂) should be observable above 2000 cm⁻¹. These are often hard to see in other spectroscopies. The rich information content in NRVS spectra continues to surprise.

Figure. NRVS in the high frequency region for the classic complex *trans*- $[57Fe(\eta^2-H_2)(H)(dppe)_2][BPh_4]$.